Dynamical coupled-channels study of meson production reactions from EBAC@JLab

Hiroyuki Kamano

(Excited Baryon Analysis Center, Jefferson Lab)

MENU2010, May 31th - June 4th, 2010

Outline

 Motivation for the N* study at Excited Baryon Analysis Center (EBAC) of Jefferson Lab

✓ Brief review of EBAC analysis in 2007-2009

✓ (Preliminary) results of K∧ production reactions

Excited Baryon Analysis Center (EBAC) of Jefferson Lab

Founded in January 2006

http://ebac-theory.jlab.org/

Objectives and goals:

Through the comprehensive analysis of world data of πN , γN , N(e,e') reactions,

- Determine N* spectrum (masses, widths)
- Extract N* form factors
- Provide information about reaction mechanism necessary to interpret the N* properties, structures, dynamical origins

Excited Baryon Analysis Center (EBAC) of Jefferson Lab

Founded in January 2006 http://ebac-theory.jlab.org/ Reaction Data — $\pi N \rightarrow \pi N, \eta N, \pi \pi N, KY, \omega N...$ **Objectives and goals:** $\gamma^{(*)}N \rightarrow \pi N, \eta N, \pi \pi N, KY, \omega N...$ Through the comprehensive analysis of world data of πN , γN , N(e,e') reactions, **Dynamical Coupled-Channels Analysis @ EBAC Determine N* spectrum** idths) "Dynamical coupled-channels model of meson production reactions" A. Matsuyama, T. Sato, T.-S.H. Lee Phys. Rep. 439 (2007) 193 Ha mechanism necessary to interpret QCD the N^{*} properties, structures, dynamical origins

Dynamical coupled-channels model of EBAC (EBAC-DCC model)

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

-+

✓ Partial wave (LSJ) amplitude of a \rightarrow b reaction:

$$T_{a,b}^{(LSJ)}(p_a, p_b; E) = V_{a,b}^{(LSJ)}(p_a, p_b) + \sum_c \int_0^\infty q^2 dq V_{a,c}^{(LSJ)}(p_a, q) G_c(q; E) T_{c,b}^{(LSJ)}(q, p_b; E)$$

coupled-channels effect

Reaction channels:

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, \pi \Delta, \sigma N, \rho N, K \Lambda, K \Sigma)$$
$$\pi \pi N$$

Transition potentials:

$$V_{a,b} = v_{a,b} + \sum_{N^*} \frac{1}{E} \frac{N^*, a^{\Gamma} N^*, b}{E - M_{N^*}}$$

exchange potentials
of ground state
mesons and baryons
bare N* states

Dynamical coupled-channels model of EBAC (EBAC-DCC model)

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

EBAC-DCC analysis (2007-2009)

Hadronic part		πΝ, ηΝ, ππΝ (π∆,ρΝ,σΝ) coupled-			
$\checkmark \pi N \rightarrow \pi N$: fitted to the data up to W = 2 GeV.	channels calculations were performed.			
	Julia-Diaz, Lee, Matsuyama, Sato, PRC76 065201 (2007)				
$\checkmark \pi N \twoheadrightarrow \pi \pi N$: cross sections calculated with the πN model.				
	Kamano, Julia-Diaz, Lee, Matsuyama, Sato, PRC79 025206 (2009)				
✓ π N → η N	: fitted to the data up to W = 2 GeV				
	Durand, Julia-Diaz, Lee, Saghai, Sato, PRC78 025204 (2008)				
Electromagnetic part					
$\checkmark \gamma^{(*)} N \twoheadrightarrow \pi N$: fitted to the data up to W = 1.6 GeV and Q^2 = 1.5 GeV ²				
	(photoproduction) Julia-Diaz, Lee, Matsuyama, Sato, Smith, PRC77 045205 (2008) (electroproduction) Julia-Diaz, Kamano, Lee, Matsuyama, Sato, Suzuki, PRC80 025207 (2009)				
✓ γ N → π π N	: cross sections calculated with the $\gamma N \& \pi N$ model.				
Kamano, Julia-Diaz, Lee, Matsuyama, Sato, PRC80 065203 (2009)					
Extraction of N* parameters					
Extraction of N* pole positions & new interpretation of dynamical origin of P11 N* states.					
	Suzuki, Julia-Diaz, Kamano, Lee, Matsuyan	na, Sato, PRL104 065203 (2010)			
 Extraction of $\gamma N \rightarrow N^*$ electromagnetic transition form factors. 					
Suzuki, Sato, Lee, arXiv:0910.1742 [nucl-th]					

EBAC-DCC analysis (2007-2009)

EBAC-DCC analysis 2010 ~

EBAC "second generation" model

Full combined analysis (global fit) of

~ End of 2010	$\succ \pi N \rightarrow \pi N$	(W < 2 GeV)
	≻ π N → η N	(W < 2 GeV)
	> πN → KY	(W < 2 GeV)
	$\succ \gamma N \rightarrow \pi N$	(W < 1.6 GeV → <mark>2 GeV</mark>)
	γN → ηN	(W < 2 GeV) "Complete
	$\succ \gamma N \rightarrow KY$	(W < 2 GeV) experiments" are planned by CLAS.
2010 ~ 2011	> $\pi N \rightarrow \pi \pi N$	(W < 2 GeV)
	$\succ \gamma N \rightarrow \pi \pi N$	(W < 1.5 GeV → <mark>2 GeV</mark>)

pi- p \rightarrow K⁰ Lambda

Preliminary

EBAC-DCC

Julia-Diaz, Saghai, Lee, Tabakin PRC73 055204

gamma p \rightarrow K+ Lambda

Jefferson Lab

gamma p \rightarrow K+ Lambda

gamma p \rightarrow K+ Lambda

Coupling effect of KY channels on piN PWA

Coupling effect of piN, pipiN, etaN channels on KY observables

Preliminary

Current EBAC-DCC result

Couplings to π **N**, η **N**, $\pi\pi$ **N channels off**

(At least) about 20% reduction is observed except backward angles.

Summary

- ✓ Full-combined analysis of πN , $\gamma N \rightarrow \pi N$, ηN , KY reactions is under way.
- Polarization observables will be a key to finding new N* states and complete experiments planned by CLAS are much desired.
- Effect of channel couplings (in the current model):
 - > KY channel couplings to πN amps.: Negligible (visible a little in P11,P13)
 - > πN , ηN , $\pi \pi N$, channel couplings to KY observables: Visible (~ 20%)
- Reaction model is kept improving:
 - > Add new bare N* states & meson-exchange processes.
 - > Add new reaction channels (ωN , KKN, $\pi \eta N$,...)

Back up

Current EBAC-DCC result

t-channel K* exchange potentials off

"Priority" of coupled-channels effect

Figure: E. Pasyuk's talk at Hall-B/EBAC meeting

Exchange potentials for channels with strange hadrons

$\pi N \rightarrow K \Lambda$	$K\Lambda \rightarrow K\Lambda$	$K\Sigma \rightarrow K\Sigma$
3 diagrams s-ch N u-ch Σ t-ch K*	4 diagrams s-ch N u-ch Ξ t-ch ω t-ch φ	5 diagrams s-ch N u-ch Ξ t-ch ρ t-ch ω t-ch φ
$\pi N \rightarrow K\Sigma$ 3 diagrams s-ch N u-ch Σ u-ch Λ	$K\Lambda \rightarrow K\Sigma$ 3 diagrams s-ch N u-ch Ξ t-ch ρ	Total 18 diagrams
t-ch K*		At present, KY couples

At present, KY couples to non-strange channels through πN channel only. ($\eta N \rightarrow KY$ is implementing)

2-body "v" potentials (non-strange channels)

$\pi N \rightarrow \pi N$	$\pi N \rightarrow \sigma N$	$\eta N \rightarrow \eta N$	$\pi\Delta \rightarrow \pi\Delta$	$\sigma N \rightarrow \sigma N$	$\rho N \rightarrow \rho N$
5 diagrams s-ch N u-ch N	3 diagrams s-ch N u-ch N	2 diagrams s-ch N u-ch N	2 diagrams s-ch N t-ch ρ	2 diagrams s-ch N u-ch N	2 diagrams s-ch N u-ch N
u-cn Δ t-ch $ρ$ t-ch $σ$ $\pi N \rightarrow \eta N$	t-cn π $\pi N \rightarrow \rho N$	ηΝ → π∆ 1 diagram s-ch N	$\pi \Delta \rightarrow \sigma N$ 1 diagram s-ch N	<i>σN → ρN</i> 2 diagrams s-ch N	
2 diagrams s-ch N u-ch N $\pi N \rightarrow \pi \Delta$	4 diagrams s-ch N u-ch N t-ch π t-ch ω	$\eta N \rightarrow \sigma N$ 2 diagrams s-ch N u-ch N	$\pi\Delta \rightarrow \rho N$ 2 diagrams s-ch N u-ch N	u-ch N	
4 diagrams s-ch N u-ch N u-ch Δ t-ch ρ		$\eta N \rightarrow \rho N$ 2 diagrams s-ch N u-ch N		Total 36	diagrams

gamma N \rightarrow MB potentials

$\gamma N \rightarrow \pi N$	$\gamma N \rightarrow \eta N$	$\gamma N \rightarrow \pi \Delta$	$\gamma N \rightarrow \sigma N$	$\gamma N \rightarrow \rho N$	$\gamma N \rightarrow K\Lambda$
7 diagrams s-ch N u-ch Δ t-ch Δ t-ch π t-ch σ contact	2 diagrams s-ch N u-ch N	5 diagrams s-ch N u-ch Δ t-ch π contact	2 diagrams s-ch N u-ch N Total 32	4 diagrams s-ch N u-ch N t-ch ρ contact	6 diagrams s-ch N u-ch Λ u-ch Σ t-ch K t-ch K* contact $\gamma N \rightarrow K\Sigma$ 6 diagrams s-ch N u-ch Λ u-ch Σ t-ch K t-ch K* contact

Strategy for the N* study @ EBAC

"Complete Experiment" of pseudoscalar meson photoproduction reactions

"Complete Experiment" = Measure ALL polarization observables needed to determine amplitudes up to overall phase unpolarized diff. crs. sec. $\rightarrow d\sigma/d\Omega$ 8/16 observables needed! Chiang, Tabakin PRC55 2054 (1997)

single spin

 \rightarrow P, Σ , T

beam-target

 \rightarrow E, F, G, H

beam-recoil

$$\rightarrow \quad C_{x'}, \quad C_{z'}, \quad O_{x'}, \quad O_{z'}$$

target-recoil

Jefferson Lab

 $\rightarrow \ T_{\chi'}, \ T_{Z'}, \ L_{\chi'}, \ L_{Z'}$

- ✓ Measurement of γ N → KY pol. obs. is very active.
- ✓ OVER-complete experiments planned by CLAS for γ p → K⁺ Λ , γ n → KY.

Provides critical information on $N^* \rightarrow KY$ decays !! Much room for new N* state searches

